Dariusz Pyza

MODELOWANIE SYSTEMÓW PRZEWOZOWYCH W ZASTOSOWANIU DO PROJEKTOWANIA OBSŁUGI TRANSPORTOWEJ PODMIOTÓW GOSPODARCZYCH

OFICyna WYDAWNicZa POLITECHNIKi WARSzAWSKieJ
WARSzAWA 2012
Dariusz Pyza
Wydział Transportu

MODELOWANIE SYSTEMÓW PRZEWOZOWYCH
W ZASTOSOWANIU DO PROJEKTOWANIA
OBSŁUGI TRANSPORTOWEJ
PODMIOTÓW GOSPODARCZYCH

Rękopis dostarczono 9.10.2012 r.

Praca dotyczy metodologii modelowania systemów przewozowych na potrzeby obsługi transportowej podmiotów gospodarczych z uwzględnieniem dostosowania potencjału systemu do realizacji ustalonych zadań przewozowych. Na opracowaną metodologię składa się opracowanie modelu systemu przewozowego uwzględniając wszystkie jego istotne elementy ze względu na przedmiot badań, tj. formalizację języka opisu, zapisu struktury systemu przewozowego i jego charakterystyk, formalizację zapisu wskaźników efektywności systemów przewozowych oraz kryteriów ich oceny, zapisu układu ograniczeń uwzględniających aspekty techniczne, ekonomiczno-technologiczne oraz jakościowe. Ponadto przedstawiono sformułowanie wybranych modeli systemów przewozowych, opracowano algorytmny metod rozwiązania wybranych zadań optymalizacyjnych wraz z ich implementacją komputerową. Wymienionym efektem pracy są pakiet komputerowe umożliwiające optymalizację systemów przewozowych dla różnych problemów decyzyjnych.

Przedstawiona w pracy metodologia pozwala w zależności od sytuacji decyzyjnej na kształtowanie systemu przewozowego o potencjale odpowiednio dopasowanym do potrzeb obsługi transportowej podmiotów gospodarczych.

Praca obejmuje osiem rozdziałów, z których trzy pierwsze stanowią krytyczną analizę stanu zagadnienia, kolejne trzy matematyczne sformułowanie problemu, natomiast ostatnie dwa stanowią aplikację zaproponowanej w pracy metodologii.

W rozdziale pierwszym przedstawiono zasadnicze aspekty modelowania systemów przewozowych, które są wprowadzeniem do problematyki przedstawionej w dalszej części pracy. Dokonano uściślenia takich pojęć jak: system, system transportowy, system logistyczny, system dystrybucji, obsługa transportowa oraz system przewozowy. W tej części pracy przedstawiono również stan zagadnienia w obszarze modelowania obsługi transportowej z uwzględnieniem dostępnej literatury. Drugi rozdział pracy dotyczy aspektów techniczno-ekonomicznych modelowania systemów przewozowych. Przedstawiono obszary badawcze oraz dokonano ich charakterystyki. Ponadto dokonano klasyfikacji systemów przewozowych z uwzględnieniem różnych kryteriów oraz zdefiniowano potencjał i efek-
tywność systemów przewozowych. Trzeci rozdział poświęcony został problematyce modelowania systemów przewozowych. Zawarto w nim istotę konstruowania modeli, cele modelowania oraz klasyfikację modeli matematycznych w aspekcie modelowania systemów przewozowych. Przedstawiono również przegląd wybranych metod i algorytmów stosowanych w rozwiązywaniu problemów organizacji obsługi transportowej.

Rozdziały czwarty, piąty i szósty przedstawiają autorskie podejście do zdefiniowania modelu systemu przewozowego obejmującego odwzorowanie struktury z uwzględnieniem odwzorowania wszystkich elementów wraz z parametryzacją elementów punktowych i liniowych struktury. Scharakteryzowano zadania systemów przewozowych, przedstawiono organizację oraz potencjał systemu przewozowego. Formalizację zapisu funkcji kryteriów i ograniczeń przedstawiono w rozdziale piątym. W rozdziale tym identyfikacji zmiennych decyzyjnych dokonano z uwzględnieniem typów systemów przewozowych, natomiast kryteria oceny podzielono na techniczne, ekonomiczne i jakościowe.

Przedstawiony w rozdziałach czwartym i piątym sformalizowany język zapisu danych, zmiennych decyzyjnych, kryteriów oraz układu ograniczeń pozwolił na sformułowanie szerokiego spektrum modeli systemów przewozowych w rozdziale szóstym.

W rozdziale siódmym opisano metody obliczeniowe dla opracowanych modeli oraz charakteryzkiye aplikacji komputerowych stanowiących oryginalne narzędzia służące wspomaganiu decyzji w zakresie projektowania systemów przewozowych. Aplikacje te stanowią oryginalne narzędzia służące wspomaganiu decyzji, w zakresie projektowania systemów przewozowych w zastosowaniu do obsługi transportowej podmiotów gospodarczych. Mogą być także wykorzystane do oceny efektywności funkcjonowania istniejących systemów przewozowych. Zaproponowane narzędzia pozwalają na analizę rozwiązań z uwzględnieniem różnych punktów widzenia i przeprowadzenie symulacji wpływu podejmowanych decyzji na kształtowanie się systemu przewozowego w zakresie jego potencjału.

Weryfikację opracowanych modeli na danych rzeczywistych obejmujących szerokie spektrum obsługi transportowej podmiotów gospodarczych przedstawiono w rozdziale ósmym. Specyfika zbajanych przypadków pozwoliła sformułować wniosek dotyczący możliwości zastosowania takiego podejścia do modelowania systemów przewozowych różnych klas na potrzeby obsługi transportowej podmiotów gospodarczych.

Słowa kluczowe: system przewozowy, modelowanie systemu przewozowego, potencjał i efektywność systemu przewozowego.

WYKAZ WAŻNIEJSZYCH OZNAČEŃ

AB	– zbiór bezpośrednich połączeń między węzłami sieci transportowej
DP	– macierz o elementach $d_{v,v'}^{p}$ dla $e_{v,v'}^{p}=1$, i o interpretacji długości połączenia tp-tego typu między węzłami v oraz v'
dp(st)	– długość przestrzeni ładunkowej środka transportu st-tego typu
e1(pl(st,p,t))	– teoretyczny wskaźnik możliwości potencjału ludzkiego sp-tego systemu przewozowego w t-tym interwale czasowym
e2(pt(sp,t))	– teoretyczny wskaźnik możliwości potencjału technicznego sp-tego systemu przewozowego w t-tym interwale czasowym
\(\varepsilon 3(ps(sp,t)) \) – teoretyczny wskaźnik możliwości potencjału ekonomicznego sp-tlego systemu przewozowego w \(t \)-tym interwale czasowym

\(\mathcal{E}(st) \) – zbiór o elementach \((\xi, st) \), i o interpretacji \(\xi \)-tego numeru środka transportu \(st \)-tego typu

\(F_{vp}^T \) – zbiór funkcji określonych na węzłach transportowych

\(F_{ap}^T \) – zbiór funkcji określonych na połączeniach transportowych

\(G \) – graf zorientowany

\(GP \) – graf struktury systemu przewozowego

\(g(st) \) – pojemność środka transportu \(st \)-tego typu

\(H(s,r) \) – zbiór dróg w grafie \(G \) między wyróżnionymi wierzchołkami o numerach \(s \), \(r \)

\(IP \) – zbiór o elementach \(v = ip \): \(z(v) = 1 \) dla \(v \in VP \) o interpretacji numerów punktów obsługi ładunków

\(IP(sp) \) – zbiór o elementach \(ip \): \(\mu_{1p}^{sp} = 1 \), \(ip \in IP \) \(\forall sp \in SP \) i o interpretacji \(ip \)-tego punktu obsługi ładunków występującego w \(sp \)-tym systemie przewozowym

\(IP(rl) \) – zbiór o elementach \(ip \): \(\mu_{2p}^{rl} = 1 \), \(ip \in IP \), \(\forall rl \in RL \) i o interpretacji \(ip \)-tego punktu obsługi ładunków, w którym obsługiwany jest ładunek \(rl \)-tego rodzaju

\(ks_{3st} \) – koszt jednostkowy stały transportu wyrażony na jednostkę pracy przewozowej środka transportu \(st \)-tego klasy

\(ks_{4st} \) – koszt jednostkowy stały transportu wyrażony na jednostkę jednostkę odległości przewozu środka transportu \(st \)-tego klasy

\(ks_{5z} \) – roczny koszt stały pracy pracownika \(z \)-tej kategorii

\(ks_{3st} \) – koszt jednostkowy zmienny transportu wyrażony na jednostkę pracy przewozowej środka transportu \(st \)-tego klasy

\(ks_{4st} \) – koszt jednostkowy zmienny transportu wyrażony na jednostkę jednostkę odległości przewozu środka transportu \(st \)-tego klasy

\(ks_{6z} \) – roczny koszt zmienny pracy pracownika \(z \)-tej kategorii

\(KS1(ip,sp) \) – zbiór o elementach \(ks_{1p}^{sp} \): \(\mu_{1p}^{sp} = 1 \) i \(\mu_{2p}^{sp} = 1 \), i o interpretacji kosztu stałego przejścia Jednostki ładunku \(rl \)-tego rodzaju przez \(ip \)-ty punkt obsługi należący do \(sp \)-tego systemu przewozowego

\(KS2 \) – macierz o elementach \(ks_{2p}^{v,v} \) dla \(e_{1v}^{v,v} = 1 \), i o interpretacji jednostkowego kosztu stałego transportu przewozu jednostki ładunku \(rl \)-tego rodzaju po połączeniu \(tp \)-tego typu między węzłami \(v \) oraz \(v' \)

\(KZ1(ip,sp) \) – zbiór o elementach \(k_{1p}^{s} \): \(\mu_{1p}^{s} = 1 \) i \(\mu_{2p}^{s} = 1 \), i o interpretacji kosztu zmiennego przejścia Jednostki ładunku \(rl \)-tego rodzaju przez \(ip \)-ty punkt obsługi należący do \(sp \)-tego systemu przewozowego
KZ2 – macierz o elementach $k_{2}^{j_{1},j_{2},j_{3},j_{4}}$ dla $x_{1}^{j_{1},j_{2},j_{3},j_{4}} = 1$, i o interpretacji jednostkowego kosztu zmiennego transportu przewozu jednostki ładunku r_{l}-tego rodzaju po połączeniu t_{p}-tego typu między węzłami v oraz v'

$\mathit{ld}(st)$ – ładowność środka transportu st-tego typu

$m_{1}(pl(sp,t))$ – liczność potencjału ludzkiego sp-tego systemu przewozowego w t-tym interwale czasowym

$m_{2}(pt(sp,t))$ – liczność potencjału technicznego sp-tego systemu przewozowego w t-tym interwale czasowym

$m_{3}(ps(sp,t))$ – liczność potencjału ekonomiczny sp-tego systemu przewozowego w t-tym interwale czasowym

M_{3}^{\max} – zbiór o elementach $\mu_{3}^{\max}(sp,sp)$ dla $\mu_{1}^{sp} = 1$ i $\mu_{2}^{sp} = 1$, $ip \in IP, sp \in SP, rl \in RL$ i o interpretacji maksymalnych możliwości obsługowych ip-tego punktu obsługi ładunków rl-tego rodzaju należącego do sp-tego systemu przewozowego

M_{4} – macierz o elementach $\mu_{4}^{sp}(sp,sp) \in \mathbb{R}^+$ dla $\mu_{1}^{sp} = 1$ i $\mu_{2}^{sp} = 1$, $ip \in IP, sp \in SP, rl \in RL$ i o interpretacji możliwości obsługowych ip-tego punktu obsługi ładunków należącego do sp-tego systemu przewozowego dla ładunku rl-tego rodzaju w t-tym interwale czasowym

$q_{1_{s}}^{rl}$ – wielkość podaży wyrażonej w jednostkach masy rl-tego rodzaju ładunku, $rl \in RL$, zgłaszanej przez nadawcę o numerze s, $s \in S$

$q_{2_{s}}^{rl}$ – wielkość podaży wyrażonej w jednostkach objętości rl-tego rodzaju ładunku, $rl \in RL$, zgłaszanej przez nadawcę o numerze s, $s \in S$

$q_{3_{r}}^{rl}$ – wielkość podaży wyrażonej w jednostkach masy rl-tego rodzaju ładunku, $rl \in RL$, zgłaszanej przez odbiorcę r, $r \in R$

$q_{4_{r}}^{rl}$ – wielkość podaży wyrażonej w jednostkach objętości rl-tego rodzaju ładunku, $rl \in RL$, zgłaszanej przez odbiorcę r, $r \in R$

$q_{5_{s,r}}^{rl}$ – wielkość zapotrzebowania na ładunek rl-tego rodzaju wyrażony w jednostkach masy, jaki powinien być przemieszczony od s-tego nadawcy do r-tego odbiorcy, $s \in S$, $r \in R$

$q_{6_{s,r}}^{rl}$ – wielkość zapotrzebowania na ładunek rl-tego rodzaju wyrażony w jednostkach objętości, jaki powinien być przemieszczony od s-tego nadawcy do r-tego odbiorcy, $s \in S$, $r \in R$

$pl(sp,t)$ – potencjał ludzki w sp-tym systemie przewozowym w t-tym interwale czasowym

$pt(sp,t)$ – potencjał techniczny w sp-tym systemie przewozowym w t-tym interwale czasowym

$ps(sp,t)$ – potencjał ekonomiczny w sp-tym systemie przewozowym w t-tym interwale czasowym
ΠI1 - macierz o elementach $\pi l_{v,v'}^{tp}$ dla $\epsilon l_{v,v'}^{tp} = 1$, i o interpretacji przepustowości połączenia tp-tego typu między węzłami v oraz v'

R - zbiór o elementach $v = r$: $z(v) = 2$ dla $v \in VP$ o interpretacji numerów punktów odbioru

RL - zbiór rodzajów ładunków

$\rho 1(pl(sp,t))$ - rzeczywisty wskaźnik możliwości potencjału ekonomicznego sp-tego systemu przewozowego w t-tym interwale czasowym

$\rho 2(pt(sp,t))$ - rzeczywisty wskaźnik możliwości potencjału technicznego sp-tego systemu przewozowego w t-tym interwale czasowym

$\rho 3(ps(sp,t))$ - rzeczywisty wskaźnik możliwości potencjału ekonomicznego sp-tego systemu przewozowego w t-tym interwale czasowym

S - zbiór o elementach $v = s$: $z(v) = 0$, dla $v \in VP$ o interpretacji numerów punktów nadania

SP - zbiór numerów rodzajów systemów przewozowych

ST - zbiór numerów typów (klas) środków transportu

$szp(st)$ - szerokość przestrzeni ładunkowej środka transportu st-tego typu

T - zbiór interwałów czasowych

$TU1(ip, sp)$ - zbiór o elementach $\tau 1_{ip,sp}^{rl,t}$: $\mu 1_{ip}^{sp} = 1 \land \mu 2_{ip}^{rl} = 1$, i o interpretacji czasu przejścia jednostki ładunku rl-tego rodzaju przez ip-ty punkt obsługi ładunków należący do sp-tego systemu przewozowego w t-tym interwale czasowym

TP - zbiór numerów typów połączeń

$TP(v,v')$ - zbiór o elementach tp: $\epsilon l_{v,v'}^{tp} = 1$, i o interpretacji numerów typów połączeń transportowych występujących między węzłami o numerach v oraz v', przy czym $v \neq v', (v,v') \in AP$, $\zeta(v,v') = 1$

$TU2$ - macierz o elementach $\tau 2_{v,v'}^{sp}(t)$ dla $\epsilon l_{v,v'}^{tp} = 1$, i o interpretacji czasu przejazdu połączeniem tp-tego typu między węzłami v oraz v' w t-tym interwale czasowym

$\tau 3_{v,v'}^{tp, st}$ - czas przejazdu środka transportu st-tego typu między węzłami v, v' na połączeniu tp-tego typu

$\tau 4_{v,v'}^{tp, st}(t)$ - czas przejazdu środka transportu st-tego typu między węzłami v, v' na połączeniu tp-tego typu w t-tym interwale czasowym

$WE(sp)$ - uogólniony wskaźnik efektywności

$wp(st)$ - wysokość przestrzeni ładunkowej środka transportu st-tego typu

V_{max} - macierz o elementach $v_{v,v'}^{max}(tp)$ dla $\epsilon v_{v,v'}^{max}(tp) = 1$, i o interpretacji maksymalnej prędkości, z jaką można się przemieszczać po połączeniu tp-tego typu między węzłami v oraz v'

VP - zbiór numerów wyróżnionych węzłów transportowych

$vl_{v,v'}^{tp}(t)$ - prędkość, z jaką można przemieszczać się po połączeniu tp-tego typu między węzłami v oraz v' w t-tym interwale czasowym
$v_{v,v}^{st,fp}$ — prędkość ruchu środka transportu st-tego typu między węzłami v, v' na połączeniu tp-tego typu

$v_{v,v}^{st,fp}(t)$ — prędkość ruchu środka transportu st-tego typu między węzłami v, v' na połączeniu tp-tego typu w t-tym interwale czasowym

ZL — zbiór numerów kategorii pracy ludzkiej

1. WPROWADZENIE

1.1. WYBRANE ASPEKTY MODELOWANIA SYSTEMÓW PRZEWOZOWYCH

Problematyka modelowania systemów przewozowych jest ważnym aspektem wykorzystywanym w projektowaniu obsługi transportowej szerokiego spektrum podmiotów gospodarczych. Na potrzeby prowadzonych w pracy rozważań w tym zakresie niezbędne jest uściślenie takich pojęć, jak: system, system transportowy, system logistyczny, system dystrybucji, obsługa transportowa oraz system przewozowy.

System jest pojęciem wieloznacznym, wywodzącym się z języka greckiego, występującym w wielu różnych odrębnych naukach, takich jak np.: nauki społeczne, astronomia, filozofia, anatomia, matematyka czy informatyka i wiele innych [39, 27]. Bardzo trudno podać jednoznaczną definicję systemu obowiązującą dla wszystkich obszarów nauki.

Pojęcie systemu definiowane jest z uwzględnieniem podstawowych jego uwarunkowań, do których należy zaliczyć [37, 111, 138]:

- ideę wyodrębniania systemu z otoczenia – system postrzegany jest jako pewna całość, która znajduje się w określonych wzajemnych relacjach z otoczeniem, przy czym nakładając ograniczenia na system oraz precyzując relacje z otoczeniem, system zachowuje autonomię;
- ideę budowy systemu z elementów (podesystemów) — wyróżnione elementy systemu oddziaływują na siebie wzajemnie, przy czym oddziaływania te mają istotny wpływ na własności systemu jako całości;
- ideę funkcji spełnianej przez system – funkcja, która jest spełniana przez system stanowi podstawę do traktowania systemu jako całości, przy czym system jako całość zdolny jest do realizowania założonego zadania oraz osiągnięcia celu jego działania;
TRANSPORT SYSTEMS MODELING
APPLIED TO BUSINESS ENTITY TRANSPORT SERVICE DESIGNING

Summary

The work concerns the methodology of modeling transport systems for business entity transport service, considering the potential adaptation of the system to realize specific transport tasks. The methodology includes the development of a model transport system including all the essential elements for the subject of the research, i.e. description language formalization, record of the transport system structure and its characteristics, record formalization of transport systems performance indicators and criteria for their evaluation, constraints record taking into account the technical, qualitative, economic and technological aspects. In addition, we present a formulation of selected models of transport systems, along with the developed algorithms to solve selected optimization tasks with
their computer implementation. A measurable result of the work are computer packages to optimize transportation systems for various decision problems.

The presented methodology, depending on the decision situation, allows to formulate a transport system with the potential appropriately matched to the needs of transport service operators.

The work includes eight chapters, of which the first three are the critical analysis of the issues, the next three mathematical formulation of the problem, while the last two are the application of the methodology proposed in the work.

The first section presents key aspects of transport system modeling, which is an introduction to the issues presented in the later part of the work. Concepts such as: system, transportation system, logistics, distribution, transportation services and transport system, are clarified. This section presents also state of the art in the modeling of transport service taking into account available literature. The second chapter of this work concerns technical and economic aspects of transport systems modeling. Research areas are presented and characterized. In addition, transport system classifications according to various criteria have been made. Potential and efficiency of transport systems have been defined. The third chapter is devoted to the problem of transport systems modeling. It includes the essence of constructing models, modeling objectives and the classification of mathematical models in terms of transport systems modeling. It also presents an overview of selected methods and algorithms used in solving transport service organization problems.

Chapters four, five and six show an original approach to defining a model of transport system, including the representation of the structure taking into account all elements with the parameterization of the elements of point and linear structure. Transport systems tasks are characterized. Organization and the potential for the transport system are presented. Formalization of criterion function and constraints record are presented in chapter five. Identification of decision variables made taking into account types of transport systems, and the evaluation criteria divided into technical, economic and qualitative are also presented in this chapter.

Presented in chapters four and five, formal language for writing data, decision variables, the criteria and the constraints have allowed to formulate a wide range of transport systems models in chapter six.

The seventh chapter describes the computational methods for the developed models and the characteristics of computer applications that are original decision support tools for the design of transport systems. These applications are original decision support tools for the design of transport systems as applied to business entity transport service. They can also be used to assess the effectiveness of existing transportation systems. The proposed tools enable the analysis of solutions taking into account different points of view and to simulate the impact of decisions on the development of the transport system in terms of its potential.

Verification of the developed models to actual data covering a wide spectrum of business entity transport service is presented in chapter eight. The specificity of the analyzed cases has allowed to formulate a proposal for possibility of using this approach for modeling various classes of transport systems for the business entity transport service.

Keywords: transport system, transport system modeling, potential and efficiency of the transport system