Sławomir Gajewski
Politechnika Gdańska, Wydział Elektroniki, Telekomunikacji i Informatyki

PROJEKTOWANIE SYSTEMÓW RADOIKOMUNIKACYJNYCH OPARTYCH NA METODZIE OFDMA NA POTRZEBY TRANSPORTU MORSKIEGO

Rękopis dostarczono: kwiecień 2016

Słowa klucze: OFDMA, transport morski, szybka transmisja danych

1. WPROWADZENIE

Problematyka szybkiej transmisji danych multimedialnych w systemach radiokomunikacyjnych dla transportu morskiego, w strefie przybrzeżnej A1, nabiera coraz szerszego znaczenia. Wiadomo, Ŝe systemy radiokomunikacji morskiej nie nadają technologicznie za rozwój radiokomunikacji komórkowej. W chwili obecnej problematyka projektowania np. systemów monitoringu, umoŜliwiających przesyłanie sygnałów obrazu, które są dedykowane do zastosowań morskich, nie jest zbyt szeroko analizowana. Powszechnie wiadomo jednak, Ŝe umoŜliwienie transmisji obrazów jest nie do przeczyenia z punktu widzenia np. systemów transportowych, systemów bezpieczeństwa na morzu czy systemów wspomagających ochronę granic państwowych.

Niniejszy referat dotyczy projektowania systemów do zastosowań specjalnych, w tym transportowych, a jego celem jest określenie przydatności metod transmisji i wielodostępu OFDMA do omawianych zastosowań, w przybrzeżnym środowisku propagacyjnym, obejmującym strefę A1. Z tego punktu widzenia dokonano pewnych założeń technicznych.
Po pierwsze przyjęto pasmo transmisyjne sygnałów o szerokości 10 MHz, co pozostaje w związku z najczęściej użytkowanym kanałem w systemie komórkowym LTE. Natomiast transmisja sygnałów odbywa się na częstotliwości ok. 1,4 GHz. W takich warunkach należy założyć, że transmisja sygnałów odbywa się w kanale radiokomunikacyjnym, który jest w ogólności selektywny częstotliwościowo, co wstępnio uzasadnia użycie metody transmisji OFDM.

Transmisja sygnałów w rozpatrywanym systemie odbywa się pomiędzy anteną umieszczoną w brzegowej stacji radiokomunikacyjnej, na wysokości ok. 15 m, a anteną znajdującą się na jednostkach pływających różnego typu, poruszających się w odległości do około 30 km od stacji brzegowej. Projektowanie systemów radiokomunikacyjnych na potrzeby transportu morskiego wymusza konieczność uwzględnienia specyfiki propagacji fal radiowych w środowisku morskim, jak również w środowisku przybrzeżnym.

2. UWARUNKOWANIA PROPAGACYJNE

W systemie radiokomunikacyjnym przeznaczonym dla transportu morskiego mamy do czynienia z transmisją sygnałów w środowisku propagacyjnym o właściwościach morskich. Sygnały docierają do odbiornika w warunkach transmisji typu LOS (ang. Line-of-Sight), a więc występuje tzw. linia bezpośredniej widoczności anten – nadawczej i odbiorczej. Najczęściej używanym modelem propagacji fal radiowych w takich warunkach [2, 3, 6, 7, 9, 11], jest model transmisji dwupromieniowej, w którym zakłada się, że do odbiornika docierają dwie składowe sygnałów. Pierwsza z nich to składowa typu LOS, a druga to składowa odbita od powierzchni morza. W omawianym środowisku mogą występować jeszcze dwie dodatkowe składowe sygnału, odbite od przeszkód brzegowych lub np. od nadbudówek albo kadłuba jednostki pływającej. Składowe te mają jednak niewielkie znaczenie z punktu widzenia transmisji sygnałów OFDM.

Na rys. 1 pokazano model kanału szerokopasmowego w postaci filtra o skończonej odpowiedzi impulsowej FIR, który składa się z linii opóźniającej zawierającej do czterech odczepów.

Rys. 1. Ilustracja modelu kanału szerokopasmowego w postaci filtra FIR
Sygnał odebrany \(y(t) \) stanowi superpozycję sygnałów odbieranych na różnych ścieżkach propagacyjnych, z odmienną fazą i opóźnieniami. Pierwsza składowa jest składową typu LOS, o amplitudzie zespolonej \(\alpha_0(t) \) i fazie \(\phi_0 \). Prawdopodobieństwo amplitudy tej składowej jest określone przez rozkład prawdopodobieństwa Rice’a. Natomiast druga jest składową odbitą od powierzchni morza, o amplitudzie zespolonej \(\alpha_1(t) \) i fazie \(\phi_1 \). Dociera ona do odbiornika z prawdopodobieństwem opisanym rozkładem Rayleigh’a. Dodatkowe składowe zależą od procesów stochastycznych \(z_1(t) \) i \(z_2(t) \), które determinują ich istnienie. Rozkłady prawdopodobieństwa amplitudy zespolonej tych składowych nie są jednoznacznie określone, zwłaszcza że należy tu uwzględnić potencjalne zmiany wysokości jednostki płynącej, np. w czasie sztormu oraz zmienne falowanie morza.

2.1. PARAMETRY KANAŁU RADIOKOMUNIKACYJNEGO

Z punktu widzenia problematyki projektowania systemów opartych na transmisji OFDM, bardzo istotna jest postać odpowiedzi impulsowej kanału. Pozostaje ona w związku z takiimi parametrami, jak: czas korelacji, rozrzut opóźnienia wielodrogowej propagacji oraz pasmo koherencji kanału. Ponadto należy uwzględnić maksymalne przesunięcie dopplerowskie oraz rozrzut tego przesunięcia.

Badania prezentowane w [1, 4, 5, 8] pokazują, że czas korelacji oraz pozostający w związku z nim rozrzut opóźnienia, są w omawianych warunkach propagacji bardzo niewielkie. Rozrzut opóźnienia mierzony na krótkiej odległości pomiędzy jednostką mobilną, a stacją brzegową jest nieco dłuższy niż mierzony dla większych odległości. W obu przypadkach rozrzut ten jest jednak na ogół nie większy niż \(50 \) ns, a w najgorszym przypadku nie przekracza \(250 \) ns. Jest to niezwykle istotne z punktu widzenia projektowania interfejsu radiowego OFDM. Takie krótkie cześci opóźnienia oznaczają bowiem, że czas ochronny pomiędzy kolejno nadawanymi symbolami OFDM może być bardzo krótki, co wpływa na bardzo dobrą wydajność widmową interfejsu radiowego. Wiadomo z literatury [10], że czas ochronny powinien być kilkakrotnie dłuższy w porównaniu z maksymalnym rozrzutem opóźnienia propagacji, aby zmniejszyć prawdopodobieństwo znacznego pogorszenia się jakości transmisji, w najbardziej krytycznych sytuacjach występujących w środowisku propagacyjnym. Biorąc pod uwagę powyższe rozważania, zalożono że czas ochronny w projektowanym systemie nie musi być dłuższy niż \(T_{g,min} = 1 \) \(\mu \)s.

Inny ważny aspekt stanowi rozrzut dopplerowski i maksymalne przesunięcie dopplerowskie, które pozostają w związku ze zmianami prędkości poruszania się jednostek płynących względem stacji brzegowej. W projektowanym systemie prędkości jednostek są raczej niewielkie w porównaniu z warunkami panującymi w systemach komórkowych, takich, jak np. LTE. Oznacza to, że projektowana odległość \(\Delta f \) pomiędzy podnośnymi sygnału OFDM, z tego punktu widzenia, może być również znacznie mniejsza w porównaniu do LTE.
3. ANALIZA CHARAKTERYSTYK INTERFEJSU RADIOWEGO OFDMA

W systemach OFDM symbole zespolone sygnałów z wyjścia modulatora są przesyłane na wielu podnośnych, których liczba zależy od pasma sygnału oraz przyjętej odległości między tymi podnośnymi. Proces przydzialu symboli sygnału zmodulowanego do podnośnych odbywa się z wykorzystaniem odwrotniej transformacji fourierowskiej, np. IFFT. Rozmiar transformaty zależy od planowanej liczby podnośnych w sygnale OFDM i stanowi najczęściej wielokrotność 2, ze względu na łatwość implementacji. Jeżeli rozmiar transformaty jest większy niż planowana liczba podnośnych, to część z nich jest po prostu wyzerowana, podobnie jak podnośna o częstotliwości zerowej (składowa stała). W przypadku naszego systemu odpowiedni jest rozmiar 1024, ponieważ liczba podnośnych jest większa od 512 i mniejsza od 1024.

3.1. PODSTAWY PROJEKTOWANIA INTERFEJSU OFDM

Odległość między podnośnymi sygnału OFDM powinna być znacznie większa niż maksymalna wartość rozmaitu opóźnienia dopplerowskiego. W naszym przypadku prędkości jednostek pływających w przypadku transportu morskiego są stosunkowo niewielkie w porównaniu np. z szybkimi samochodami w systemach naziemnych. Realnie najszybsze jednostki mogą poruszać się z prędkością 20, może 25 węzłów, a typowe rzeczywistością poniżej 16 węzłów, a więc maksymalnie kilkadziesiąt km/h. Zatem nawet w najgorszym przypadku rozmait dopplerowski nie będzie duży. Jednak w warunkach sztormowych, wskutek gwałtownych szarpieni, prędkość względna może być w krótkich przedziałach czasu znacznie większa. Nie należy tego lekceważyć z uwagi na to, że system powinien działać niezawodnie zwłaszcza w trudnych warunkach pogodowych. Dlatego odległość pomiędzy podnośnymi powinna spełniać warunek

\[\Delta f \gg \Delta f_{\text{Doppler}} \] (1)

i zaleca się zastosowanie odległości \(\Delta f_{\text{min}} = 12 \text{ kHz} \).

Częstotliwość próbkowania stosowana w interfejsie radiowym jest również zależna od przyjętej wartości \(\Delta f \) oraz od przyjętego rozmiaru transformaty \(FFT_{\text{SIZE}} \), czyli

\[f_s = FFT_{\text{SIZE}} \cdot \Delta f \] (2)

Natomiast czas \(T_{\text{OFDM}} \) trwania symbolu OFDM jest odwrotnie proporcjonalny do przyjętej wartości \(\Delta f \), czyli

\[T_{\text{OFDM}} = \frac{1}{\Delta f} \] (3)
Calkowity czas T_{TR} trwania przesyłanych symboli OFDM, uwzględniający przyjęty przedział ochronny T_g, wynosi

$$T_{TR} = T_{OFDM} + T_g$$ (4)

Zależy on od liczby N_{symb} symboli OFDM przesyłanych w jednostce czasu, którą stanowi pojedyncza szczelina czasowa o czasie trwania $T_{slot} = 0,5$ ms. Im dłuższy jest czas trwania symbolu OFDM, tym mniejsza jest więc liczba symboli N_{symb} przesyłanych w szczelinie czasowej. Calkowity czas transmisji wynosi zatem

$$T_{TR} = \frac{T_{slot}}{N_{symb}}$$ (5)

Zauważmy, że im mniejsza jest odległość Δf, tym mniej symboli możemy przesłać w jednostce czasu. Dlatego, niezależnie od komentarza w ostatnim akapicie punktu 2.2, zwyczajnie nie opłaca się zawężać Δf, ze względu na malejącą efektywność widmową transmisji.

Zaleca się więc raczej odpowiednie dobieranie czasowych przedziałów ochronnych pomiędzy kolejno nadawanymi symbolami OFDM. Można do tego przystąpić po określeniu czasu T_{OFDM}, uwzględniając liczbę symboli OFDM, jaką chcemy przesłać w jednej szczelinie czasowej (0,5 ms). Jednocześnie T_g powinien spełniać warunek

$$T_g > \Delta T_{delay}$$ (6)

gdzie ΔT_{delay} oznacza rozrzut opóźnienia wielodrogowej propagacji. Przy czym znacznie bezpieczniej jest, gdy $T_g >> \Delta T_{delay}$. Zwykle przyjmuje się, że T_g powinno być kilkakrotnie większe od ΔT_{delay} w znacznym procencie czasu obserwacji.

3.2. ANALIZA CHARAKTERYSTYK SYSTEMU

Transmisja sygnałów w proponowanym systemie odbywa się w pojedynczym kanale częstotliwościowym o szerokości 10 MHz, w trybie w dupleksie czasowego TDD. Oznacza to, że jeden kanał częstotliwościowy jest przeznaczony do transmisji w łączu w dół (do jednostki pływającej) i w górze (do stacji brzegowej). Podstawowe parametry techniczne proponowanego systemu zebrano w tab. 1.

Natomiast w tab. 2 podano wartości parametrów interfejsu radiowego, osiągane dla różnej liczby symboli OFDM w pojedynczej szczelinie czasowej (0,5 ms) oraz zależne od doboru odległości między podnośnymi w dziedzinie częstotliwości. W szczególności podano wartość maksymalnej, osiąganej przepływności R_p, unormowanej względem wartości minimalnej R_{min}, uzyskanej podczas analizy (najgorszy przypadek). Taki sposób przedstawienia wyników umożliwia proste zaobserwowanie różnic osiąganych dla odmiennych konfiguracji łączu radiowego i w istocie stanowi jednoznaczny wskaźnik efek-
tywności wykorzystania zasobów fizycznych interfejsu radiowego. Ponadto, dla porównania, w tab. 2 podano także wartości osiągane dla dwóch konfiguracji stosowanych w systemie LTE: dla 7 symboli OFDM (tzw. krótki przedrostek cykliczny) oraz dla 6 symboli OFDM w szczelinie (tzw. krótki przedrostek).

Tablica 1

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Wartość</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dostęp wielokrotny / metoda dupleksu</td>
<td>OFDMA / TDD</td>
</tr>
<tr>
<td>Częstotliwość środkowa kanału</td>
<td>1,4 GHz</td>
</tr>
<tr>
<td>Pasmo kanału (nominalne)</td>
<td>10 MHz</td>
</tr>
<tr>
<td>Modulacja</td>
<td>QPSK i 16 QAM</td>
</tr>
<tr>
<td>Kodowanie kanałowe (korekcyjne)</td>
<td>Kod splotowy (3,1,9)</td>
</tr>
<tr>
<td>Rozmiar transformaty FFT</td>
<td>1024</td>
</tr>
<tr>
<td>Liczba symboli OFDM w jednej szczelinie (0,5 ms)</td>
<td>6, 7 lub 8</td>
</tr>
<tr>
<td>Rozmiar bloku zasobów</td>
<td>12 podnośnych razy 8 (7 lub 6 symboli OFDM)</td>
</tr>
</tbody>
</table>

Tablica 2

<table>
<thead>
<tr>
<th>N_{sym}</th>
<th>Liczba podnośnych</th>
<th>$\Delta f \text{ [kHz]}$</th>
<th>$T_{OFDM} \text{ [\mu s]}$</th>
<th>$T_{OFDM+T_g} \text{ [\mu s]}$</th>
<th>$T_g \text{ [\mu s]}$</th>
<th>R_p/R_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalne Δf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>792</td>
<td>12,37</td>
<td>80,84</td>
<td>83,33</td>
<td>2,49</td>
<td>1,57</td>
</tr>
<tr>
<td>7</td>
<td>672</td>
<td>14,58</td>
<td>68,59</td>
<td>71,43</td>
<td>2,84</td>
<td>1,56</td>
</tr>
<tr>
<td>8</td>
<td>600</td>
<td>16,33</td>
<td>61,24</td>
<td>62,50</td>
<td>1,26</td>
<td>1,59</td>
</tr>
</tbody>
</table>

Zmniejszone Δf | | | | | | |
3	1608	6,09	164,08	166,67	2,59	1,60
4	1200	8,17	122,45	125	2,55	1,59
5	960	10,21	97,96	100	2,04	1,59

System LTE | | | | | | |
| 6 | 600 | 15 | 66,67 | 83,34 | 16,67 | 1,19 |
| 7 | 600 | 15 | 66,67 | 71,43 | ~4,76 | 1,39 |

Jak widać, niemalże dla każdej konfiguracji jesteśmy w stanie dobrać parametry łącza w taki sposób, aby efektywność wykorzystania zasobów była porównywalna. Faktycznie zastosowanie większej liczby symboli OFDM w jednostce czasu daje nieco lepsze wyniki, ale jesteśmy tu w znacznej mierze ograniczeni osiąganymi wartościami czasu ochronnego. Jeżeli dopuścimy czas $T_g = 1,26 \mu s$, co jest zgodne z wcześniejszymi interpretacjami, to faktycznie najkorzystniejszy jest wariant 8 symboli OFDM, przy zachowaniu $\Delta f > 12$ kHz. Zauważmy także, że ten wariant jest najkorzystniejszy z punktu widzenia odporności systemu na rozrzt dopplerowski i błędy synchronizacji, ze względu na największą wartość Δf, która może być wykorzystana dla tej konfiguracji. Przy większych wartościach Δf osiągniemy również wyższą jakość transmisji, ponieważ maleje prawdopodobieństwo zmniejszenia się stopnia ortogonalności między podnośnymi.

Możemy też zauważyć, że jeżeli dopuścimy wartości Δf mniejsze niż 12 kHz, to możemy uzyskać nawet nieco większą wydajność interfejsu radiowego. Zauważmy jednak, że kosztem tego znikomego zysku jest zmniejszenie odporności systemu na rozrzt dopple-
rowski, zwiększenie prawdopodobieństwa błędów w synchronizacji oraz konieczność zastosowania większej liczby podnośnych, co oznacza z kolei większą złożoność obliczeniową. Przy tak znikomym zysku jest to więc raczej nieuzasadnione.

Rys. 2. Unormowana przepływność R_p/R_{min} w funkcji czasu T_g, dla różnych konfiguracji symboli OFDM: a) wykres dla wartości $\Delta f > 12$ kHz, b) wykres dla mniejszych Δf

Wykresy zależności osiąganej przepływności unormowanej w funkcji zastosowanego czasu ochronnego pokazano na rys. 2. Z przedstawionych wykresów wynika, że osiągana przepływność bardzo silnie zależy od przyjętego czasu ochronnego. Każdy spośród punktów zaznaczonych na wykresach odpowiada wariantowi konfiguracji, który jest potencjalnie możliwy do implementacji. Oczywiście większy przedział ochronny oznacza zmniejszenie wydajności i odwrotnie. Powinniśmy zatem dążyć raczej do małych wartości T_g. Natomiast zmniejszanie wartości Δf prowadzi do komplikacji omówionych wcześniej. Dlatego preferowane rozwiązanie jest raczej dla Δf większych niż 12 kHz. Warto też zauważyć, że dla małych czasów ochronnych T_g większą wydajność osiągamy dla małych liczb symboli OFDM w szczelinie czasowej.

Jak wcześniej wspomniano, z analizy uwarunkowań propagacyjnych wynika, że akceptowalny może być czas ochronny wynoszący niemniej niż 1 μs. Oznacza to, że w naszym systemie możemy dopuścić transmisję nawet z 8 symbolami OFDM w jednej szczelinie czasowej. Wpływ to bardzo pozytywnie na osiągane przepływność, która, jak widać na rys. 2, jest znacznie większa od przepływności osiąganych w systemie LTE.

4. PODSUMOWANIE

W referacie przedstawiono podstawy projektowania interfejsu radiowego wykorzystującego wielodostęp OFDMA, przeznaczonego dla systemu szybkiej transmisji danych, pracującego w przybrzeżnym środowisku propagacyjnym, który może znaleźć zastosowanie w transporcie morskim. Jak wspomniano, morskim środowisku propagacji fal radiowych panują bardzo dobre warunki dla transmisji sygnałów OFDM. Wynika to po pierwsze
z małego rozrzutu opóźnienia propagacji wielodrogowej oraz, po drugie, z relatywnie małego rozrzutu doplerowskiego dla jednostek pływających, które poruszają się ze stosunkowo małymi prędkościami. W omawianym środowisku propagacyjnym mamy więc możliwość zastosowania krótkich przedziałów ochronnych pomiędzy kolejno nadawanymi symbolami OFDM. Dzięki temu jest możliwe osiągnięcie bardzo dużej efektywności wykorzystania zasobów fizycznych systemu, która jest nieco większa niż np. uzyskiwana w systemie naziemnym LTE. Oznacza to, że metoda OFDMA jest rekomendowana do zastosowania w systemach radiokomunikacji morskiej na potrzeby transportu morskiego.

Bibliografia

DESIGN OF OFDMA-BASED RADIO COMMUNICATION SYSTEMS FOR MARITIME TRANSPORT

Summary: In the paper the principle of OFDMA-based radio communication systems of high-speed data transmission for maritime transport systems is presented. In the first part basic characteristics of radio communication channel in the A1 sea zone, having an effect on the process of OFDMA systems design is characterized. Subsequently, basic characteristics of proposed system and the conditions of radio interface design are described. In the last part of the paper achieved throughput for various configurations of radio interface and different system operating conditions are analysed. The proposed solutions are useful for the realization of multimedia services in maritime transport systems.

Keywords: OFDMA, maritime transport, high-speed data transmission