Piotr Tomczuk, Andrzej Czerepicki
Politechnika Warszawska, Wydział Transportu

Anna Wytrykowska
Politechnika Warszawska, Wydział Transportu, Koło Naukowe Elektrotechniki w Systemach Transportowych

PRZYKŁAD PARAMETRYCZNEJ METODY OCENY PRZEJŚĆ DLA PIESZYCH W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

Rękopis dostarczono: marzec 2016

Słowa kluczowe: ocena BRD, przejścia dla pieszych, procedura oceny

1. WSTĘP

Bezpieczeństwo ruchu drogowego w Polsce stanowi istotny problem dla społeczeństwa. Mimo wdrażania programów poprawy bezpieczeństwa ruchu drogowego (BRD), Polska wykazuje wysoki bilans ofiar śmiertelnych wypadków drogowych [15]. Piesi stanowią grupę wysokiego ryzyka zagrożeń wypadkami drogowymi w Polsce. Wypadki drogowe z ich udziałem stanowią ok 26% ogółu. W 2014 roku w wypadkach zginięły 1104 osoby (34,5% ogółu zabitych na drodze), a 8339 osób zostało rannych (19,6% ogółu rannych) [15]. W 2014 roku 75% wypadków drogowych z udziałem pieszych odnotowano w miejscach przeznaczonych dla ruchu pieszego: przejścia dla pieszych, skrzyżowania, chodniki, drogi dla pieszych, pobocza, przystanki komunikacji zbiorowej i inne.
W tablicy 1 przedstawiono przyczyny i skutki wypadków drogowych w miejscach dopuszczających ruch pieszych.

Tablica 1
Przyczyny i skutki wypadków drogowych w miejscach przeznaczonych dla ruchu pieszego w 2014 roku w Polsce [15]

<table>
<thead>
<tr>
<th>Wybrane miejsca ruchu pieszych</th>
<th>Wypadki</th>
<th>Zabici</th>
<th>Ranni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Przejście dla pieszych</td>
<td>3540</td>
<td>279</td>
<td>3487</td>
</tr>
<tr>
<td>Skrzyżowanie</td>
<td>2596</td>
<td>197</td>
<td>2584</td>
</tr>
<tr>
<td>Chodnik, droga dla pieszych</td>
<td>382</td>
<td>21</td>
<td>436</td>
</tr>
<tr>
<td>Pobocze</td>
<td>88</td>
<td>15</td>
<td>84</td>
</tr>
<tr>
<td>Przystanek komunikacji zbiorowej</td>
<td>94</td>
<td>10</td>
<td>91</td>
</tr>
<tr>
<td>Ogółem</td>
<td>6700</td>
<td>522</td>
<td>6682</td>
</tr>
</tbody>
</table>

Jak wynika z danych zawartych w tablicy 1 pieszy narażony jest na największe zagrożenie, spośród miejsc, w których poruszają się piesi, czyli na przejściach dla pieszych. W 2014 roku w Polsce w rejonie przejść dla pieszych odnotowano 3540 wypadków drogowych (40% ogółu wypadków drogowych z udziałem pieszych). W wypadkach tych zginęło 279 osób (25% ogółu ofiar śmiertelnych), a 3487 zostało rannych (42% ogółu rannych) [15].

Wśród głównych czynników decydujących o zagrożeniu pieszych uczestników ruchu drogowego należy wymienić: natężenie ruchu pieszego i kolowego, dopuszczalną prędkość pojazdów, zachowania uczestników ruchu drogowego, wzajemną widoczność pieszego i kierowcy, stan techniczny infrastruktury drogowej i otoczenia drogi, stan techniczny pojazdów. Wymienione czynniki powiązane są z modelem człowiek – pojazd – droga (CPD). Na rysunku 1 przedstawiono wzajemną relację pomiędzy bezpieczeństwem ruchu drogowego a systemem CPD [8].

Rys. 1. Oddziaływanie systemu CPD na bezpieczeństwo ruchu drogowego
Źródło: Opracowanie własne

Analiza czynników bezpieczeństwa ruchu drogowego pozwala na identyfikację przyczyn i skutków wypadków drogowych. W efekcie podejmowane są inicjatywy na rzecz poprawy bezpieczeństwa ruchu drogowego. Stworzone narzędzia [5,6] do zarządzania bezpieczeństwem infrastruktury drogowej pozwalają usystematyzować i ujednolicić prowadzone działania. Jednym z narzędzi zarządzania bezpieczeństwem infrastruktury drogowej jest kontrola
bezsieścią, istniejącej sieci dróg lub jej poszczególnych elementów oraz jest prowadzona na etapie długookresowego użytkowania dróg. Analiza ryzyka prowadzona jest przez wykwalifikowanych inżynierów BRD, którzy identyfikują zagrożenia na podstawie opracowanej procedury. W efekcie można podjąć próbę wartościowania ryzyka oraz zidentyfikowania miejsc o wysokim, niedopuszczalnym poziomie zagrożeń. Reakcją na ryzyko jest wybór i wdrożenie działań zmniejszających wpływ zidentyfikowanych zagrożeń oraz na dalszych etapach: komunikowanie o ryzyku i monitorowanie ryzyka [7].

Kontrola bezpieczeństwa istniejącego i eksploatowanego elementu drogi, jakim jest przejście dla pieszych pozwala na identyfikację istniejących czynników oraz ich wartościowanie [5, 7].

Stosowany w Polsce model oceny bezpieczeństwa ruchu drogowego uwarunkowany jest wymaganiami zawartymi w Dyrektywie Parlamentu Europejskiego [2] oraz w Ustawie z dnia 3 kwietnia o zmianie ustawy o drogach publicznych oraz niektórych innych ustaw [14]. Szczegółowe wytyczne przeprowadzania oceny BRD zawarte zostały w Instrukcji dla audytorów ruchu drogowego [5]. Procedura omówiona w pozycjach [2, 5, 14], ze względu na szeroki zakres omawianych pozycji, nie precyzuje postępowania w przypadku oceny zagrożenia na przejściach dla pieszych. W Polsce brakuje odrębnych przepisów i procedur przeprowadzania kontroli i oceny BRD odnoszącej się dla przejść dla pieszych.

Celem niniejszego artykułu jest zaprezentowanie wyników oceny ryzyka na wybranym przykładzie istniejącego, eksploatowanego przejścia dla pieszych, z wykorzystaniem metody stosowanej przez autorów: Montella i Mauriello przedstawionej w pracach [1, 9].

2. OPIS PREZENTOWANEJ PROCEDURY OCENY BEZPIECZEŃSTWA RUCHU DROGOWEGO NA PRZEJŚCIU DLA PIESZYCH

W artykule zaprezentowano ocenę bezpieczeństwa ruchu drogowego na wybranym przejściu dla pieszych, z wykorzystaniem metody zastosowanej przez Włoskich specjalistów w mieście Giugliano. Procedura oceny przejścia dla pieszych sporządzona została przez Departament Inżynierii Transportu „Luigi Tocchetti” i opisana w pracach badawczych [1, 9]. Wykorzystana procedura została szczegółowo omówiona w pracach [11, 12]. Autorzy [1, 9] w przytoczonych publikacjach przedstawili grupy czynników, wagi punktowe im przypisane oraz zastosowaną metodykę oceny.

Prezentowana metoda [1, 9] wykorzystuje w analizie 6 grup czynników: lokalizacja, widoczność, dostępność, organizacja ruchu, oświetlenie, warunki ruchowe na przejściu dla pieszych. Wymienione czynniki zostały szczegółowo opisane i uzupełnione o wagi punktowe. W tabeli 2 przedstawiono wyróżnione grupy czynników wraz z przydzielonymi wagami punktowymi.
Tablica 2

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Czynnik</th>
<th>Waga (W):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lokalizacja przejścia dla pieszych</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Widoczność przejścia dla pieszych</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Dostępność przejścia dla pieszych</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Oznakowanie przejścia dla pieszych</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Oświetlenie przejścia dla pieszych</td>
<td>2</td>
</tr>
<tr>
<td>6.</td>
<td>Ruch uliczny</td>
<td>3</td>
</tr>
</tbody>
</table>

W prezentowanej procedurze [1, 9] przydzielono wagi punktowe odpowiednio 1 ÷ 5 dla głównych grup czynników natomiast czynniki stanowiące ich opis określono wagami w zakresie 1 ÷ 7.

Dokonując oceny BRD na przejściu dla pieszych, każdemu z czynników przypisano odpowiednio oceny (AS_{ik}):
- 0, jeśli czynnik nie wpływa na bezpieczeństwo,
- 1, jeśli występuje ryzyko zagrożenia w ruchu drogowym,
- 2, jeśli czynnik znacząco wpływa na bezpieczeństwo.

Prezentowane grupy czynników, ich wagi punktowe oraz przydzielone oceny pozwala na obliczenie wskaźnika bezpieczeństwa ruchu drogowego na przejściu dla pieszych. Wskaźnik bezpieczeństwa RI opisany jest wzorem (1) [1, 9]:

$$RI = \frac{\sum_{k=1}^{6} RI_{k} \times W_{k}}{\sum_{k=1}^{6} W_{k}} \times 100 \tag{1}$$

gdzie:
- RI_{k} – wskaźnik ryzyka obliczony dla czynnika k,
- W_{k} – waga czynnika k.

Wskaźnik ryzyka dla czynnika k należy obliczyć wg wzoru (2) [1, 9]:

$$RI_{k} = \frac{\sum_{i=1}^{m} AS_{ik} \times W_{ik}}{2 \times \sum_{i=1}^{m} W_{ik}} \tag{2}$$

gdzie:
- AS_{ik} – wartość oceny przypisana dla czynnika i,
- W_{ik} – waga czynnika i.

Obliczona wartość wskaźnika bezpieczeństwa zawiera się w granicach 0 ÷ 100. W tablicy 3 przedstawiono wartości wskaźnika bezpieczeństwa stosowane w zaprezentowanej metodzie [1, 9] i odpowiadające im klasy ryzyka. Wartość $RI = 100$, oznacza, że na przejeździe dla pieszych panują warunki zagrażające bezpieczeństwu i życiu uczestników ruchu drogowego (Klasa ryzyka F). Wartość RI zbliżona do 0 (Klasa ryzyka A) oznacza wysoki poziom bezpieczeństwa. Można także podać ocenie poszczególne grupy czynników, uzyskując oceny cząstkowe identyfikujące zagrożenie.
W procedurze [1, 9] nie opisano metodyki przyjęcia wag, liczby klas ryzyka i granic pomiędzy nimi. Nadmienić należy, że w Polsce stosowany jest odmienny sposób opisu klas ryzyka i poziomów ryzyka [8], który należy uwzględnić w dalszych pracach badawczych prowadzonych w Polsce.

3. OCENA BRD NA PRZYKŁADZIE WYBRANEGO PRZEJŚCIA DLA PIESZYCH

Podjęto próbę implementacji zaproponowanej w literaturze [1, 9] procedury na przejściach dla pieszych. W tym celu przeprowadzono szereg wizji lokalnych na wybranych przejściach dla pieszych. Ze względu na obszerność uzyskanych wyników w niniejszym artykule zdecydowano się przedstawić tylko jeden przypadek.

Przedmiotem analizy BRD jest przejście dla pieszych lokalizowane w Warszawie, w dzielnicy Wesoła. Na rysunku 2 przedstawiono lokalizację omawianego przejścia dla pieszych.

Rys. 2. Plan orientacyjny omawianego przejścia dla pieszych

Żródło: opracowano na podstawie [13]

Ulica Armii Krajowej jest drogą powiatową, położoną w dzielnicy Woła Grzybowska. Przejście dla pieszych zlokalizowane jest w terenie zabudowanym w pobliżu skrzyżowania...

Rys. 3. Geometria omawianego przejścia dla pieszych
Źródło: opracowanie własne

Ulica Armii Krajowej jest drogą jednojezdniową dwupasową (po jednym pasie ruchu w każdym kierunku). Jezdnia ma szerokość ok. 7 m. Szerokość pasów ruchu wynosi 3,5 m. W obszarze przejścia dla pieszych została poszerzona do 9 m. W efekcie przez środek poprowadzono 2 m azyl dla pieszych. W pobliżu przejścia dla pieszych poprowadzono jednostronnie chodnik o szerokości ok. 2 m. Jezdnia wykonana jest z nawierzchni bitumicznej, ograniczonej z obu stron krawężnikami. Nawierzchnia jezdni jest w dobrym stanie, jednak miejscami można zaobserwować ślady spękań i ubytków. Po stronie południowej jezdni nie poprowadzono chodnika oraz utwardzonego pobocz przy dojściu do przejścia dla pieszych.

Obliczony dla analizowanego przejścia dla pieszych wskaźnik ryzyka wynosi 45 %. Wartość ta odpowiada klasie ryzyka D [1, 9]. Na rysunku 5 przedstawiono wartość wskaźnika bezpieczeństwa dla poszczególnych czynników.

Rys. 5. Wartość wskaźnika bezpieczeństwa dla poszczególnych czynników

Źródło: opracowanie własne

W tablicy 4 przedstawiono szczegółową ocenę oświetlenia zastosowanego na omawianym przejściu dla pieszych. W tablicy 5 przedstawiono szczegółową ocenę czynnika ruch uliczny.

Tablica 4

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Czynnik</th>
<th>Waga</th>
<th>Opis</th>
<th>Ocena</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Oświetlenie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Widoczność przejścia dla pieszych w porze nocnej</td>
<td>3</td>
<td>Ograniczona</td>
<td>2</td>
</tr>
<tr>
<td>5.2</td>
<td>Widoczność przejścia dla pieszych o wschodzie/zachodzie słońca</td>
<td>1</td>
<td>Prawidłowa</td>
<td>0</td>
</tr>
</tbody>
</table>

Tablica 5

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Czynnik</th>
<th>Waga</th>
<th>Opis</th>
<th>Ocena</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Ruch uliczny</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Prędkość pojazdów</td>
<td>7</td>
<td>> 50 [km]</td>
<td>2</td>
</tr>
<tr>
<td>6.2</td>
<td>Udział pojazdów ciężarowych w strukturze rodzajowej</td>
<td>2</td>
<td>brak</td>
<td>0</td>
</tr>
<tr>
<td>6.3</td>
<td>Udział pojazdów jednośladowych w strukturze rodzajowej</td>
<td>1</td>
<td>< 10 [poj/h]</td>
<td>0</td>
</tr>
</tbody>
</table>

Jak wynika z danych zaprezentowanych w tablicach 4 i 5 potencjalne zagrożenie uczestników ruchu drogowego na przejściu dla pieszych spowodowane jest nieprawidłowymi warunkami oświetleniowymi w porze nocnej oraz nadmierną prędkością pojazdów. Pomimo braku zarejestrowanych wypadków drogowych na omawianym przejściu dla pieszych zaprezentowana metoda wskazała wysoki wskaźnik ryzyka. Jest to spowodowane przyjętą przez Autorów [1, 8] zbyt wysoką wagą punktową elementów opisujących czynniki oświetlenia oraz ruchu ulicznego.
4. WNIOSKI

Zaprezentowane w artykule wyniki oceny bezpieczeństwa na przejeździe dla pieszych wskażują na potrzebę prowadzenia dalszych prac badawczych nad uszczegółowieniem metody.

Jak wynika z informacji zawartych w literaturze [1, 9] Autorzy metody nie uzasadnili doboru wag punktowych dla poszczególnych czynników. Również opis czynników nie uwzględnia istnienia elementów infrastruktury drogowej stosowanej w Polsce [3, 8]. W zaproponowanej metodzie nie uwzględniono szeregu mierzalnych parametrów (np. obszaru widoczności [6], wymiarów geometrycznych przejścia, czy parametrów oświetleniowych), które można uwzględnić w ocenie parametrycznej przejścia dla pieszych.

Należy zatem stwierdzić, że zaproponowana metoda wymaga uzupełnienia i dostosowania do warunków polskich. Autorzy niniejszej publikacji podjęli pracę nad modyfikacją wykorzystanej w artykule metody [1, 9]. Dotychczasowe efekty zostały zaprezentowane w pracach [11, 12]. W ramach prowadzonych badań uzupełniono czynniki wpływające na poziom bezpieczeństwa, wstępnie zmodyfikowano ich opis oraz wagi punktowe. Dobór wag punktowych wymaga wnikliwej analizy i jest przedmiotem dalszych prac badawczych.

Należy nadmienić, że opracowanie metody oceny zagrożeń na przejeździe dla pieszych i stworzenie jednolitej, możliwej do zastosowania w Polsce procedury oceny bezpieczeństwa, wymaga prowadzenia długotrwałych, zaawansowanych i interdyscyplinarnych prac badawczych w obszarach związanych z BRD. Prace te wymagają zaangażowania szeregu specjalistów związanych z projectowaniem i eksploatacją infrastruktury drogowej, audytorów BRD, naukowców zajmujących się problematyką bezpieczeństwa ruchu drogowego, psychologią transportu i oświetleniem ulicznym.

Bibliografia

EXAMPLE OF PARAMETRIC METHODS OF ASSESSMENT OF ROAD SAFETY AT PEDESTRIAN CROSSING

Summary: Poland ranks among the countries with a high risk threat of accidents involving pedestrians. Therefore they are taken a lot of action to improve road safety. In the general perspective they concern the safety management of the road infrastructure including such elements as: BRD audit (concerning the assessment of the projects road) and BRD control (concerning an road existing devices). As indicated by the statistics of accidents are particularly dangerous place of pedestrian crossings. The article presents an example application created in Italy assessment procedure BRD at pedestrian crossings, takes account of a number of factors affecting the safety of pedestrians. In conclusion, Reference to the results achieved in the context of the use of the method in Polish conditions.

Keywords: road safety, pedestrian crossing, assessment of factors