OPTYMALIZACJA KSZTAŁTU KOLEJOWYCH KRZYWYCH PRZEJŚCIOWYCH
ZE SZCZEGÓLNYM UWZGLĘDNIENIEM STREFY POCZĄTKOWEJ I KOŃCOWEJ

Rękopis dostarczono: kwiecień 2016

Słowa kluczowe: kolejowe krzywe przejściowe, dynamika pojazdów szynowych, symulacja

1. WSTĘP

2. CEL PRACY

Celem pracy było wyjaśnienie, dlaczego załomy krzywizn otrzymanych krzywych przejściowych optymalnych w skrajnych punktach krzywej – początkowym oraz końcowym – mają stosunkowo niewielki negatywny wpływ na dynamicę pojazdu szynowego poruszającego się po takich krzywych.

W niniejszej pracy wykorzystano dwa kryteria służące ocenie kształtu KP – wartość znormalizowanej całki z wartości bezwzględnej przyspieszenia poprzecznego nadwozia po długości drogi (1) i wartość znormalizowanej całki z wartości bezwzględnej zmiany przyspieszenia poprzecznego nadwozia po długości drogi (2). W badaniach dążono do tego, aby osiągnąć minimalną wartość tych wielkości.

\[
FC_1 = L_C \int_{\theta}^{L_C} |\ddot{y}_b| \, dl
\]

\[
FC_2 = L_C \int_{\theta}^{L_C} |\ddot{y}_b| \, dl
\]

gdzie:

\(L_C \) – długość drogi,

\(\ddot{y}_b \) – przyspieszenie poprzeczne środka masy nadwozia i jego zmiana.

3. MODEL POJAZDU

Model pojazdu jest wyposażony w parę koło/szyna, której profile S1002/UIC60 odpowiadają rzeczywistym profilom używanym w całej Europie. Nieliiniowa geometria tej pary wprowadzana jest do modelu w postaci tzw. tablicy parametrów kontaktowych. Do obliczenia nieliiniowych stycznych sił kontaktowych między kołem a szyną wykorzystano znany program FASTSIM autorstwa J.J. Kalkera.
Rys. 1. Struktura modelu nominalnego obiektu 2–osiowego przyjętego do analizy (np. [9]):

a) model pionowy toru, b) model poprzeczny toru, c) wagon

4. TYP KRZYZEJ PRZEJŚCIOWEJ PRZYJĘTY DO ANALIZY

Geometrię krzywej przejściowej przestawiono w postaci następujących równań:

\[y = \frac{I}{R} \left(\frac{A_1 l^n}{l_0^{n-2}} + \frac{A_{n-1} l^{n-1}}{l_0^{n-3}} + \frac{A_{n-2} l^{n-2}}{l_0^{n-4}} + \frac{A_{n-3} l^{n-3}}{l_0^{n-5}} + \ldots + \frac{A_1 l^4}{l_0^2} + \frac{A_1 l^3}{l_0^3} \right), \]

(3)

\[k = \frac{d^2 y}{dl^2} = \frac{I}{R} \left[n(n-1) \frac{A_1 l^{n-2}}{l_0^{n-2}} + (n-1)(n-2) \frac{A_{n-1} l^{n-3}}{l_0^{n-3}} + \ldots + 3 \cdot 2 \frac{A_1 l^2}{l_0^2} \right], \]

(4)

\[h = H \left[n(n-1) \frac{A_1 l^{n-2}}{l_0^{n-2}} + (n-1)(n-2) \frac{A_{n-1} l^{n-3}}{l_0^{n-3}} + \ldots + 4 \cdot 3 \frac{A_1 l^2}{l_0^2} + 3 \cdot 2 \frac{A_1 l^1}{l_0^1} \right], \]

(5)

\[i = \frac{dh}{dl} = H \left[n(n-1)(n-2) \frac{A_1 l^{n-3}}{l_0^{n-2}} + (n-1)(n-2)(n-3) \frac{A_{n-1} l^{n-4}}{l_0^{n-3}} + \ldots + 5 \cdot 4 \cdot 3 \frac{A_1 l^2}{l_0^2} + 4 \cdot 3 \cdot 2 \frac{A_1 l^1}{l_0^1} + 3 \cdot 2 \frac{A_1 l^0}{l_0^0} \right], \]

(6)

gdzie \(y, k, h, \) oraz \(i \) określają współrzędną poprzeczną krzywej, krzywiznę, przechyłkę oraz pochylenie rampy przechylkowej, \(R, H, l_0 \) oraz \(l \) określają promień luku kołowego, przechyłkę w luku kołowym, całkowitą długość krzywej oraz bieżącą długość krzywej.
Symbole A_i były współczynnikami wielomianu ($i = n, n-1, \ldots, 4, 3$), gdzie n jest stopniem wielomianu. Jeśli przyjąć, że liczba wyrazów wielomianu nie może być mniejsza niż 2, to najmniejszy stopień n_{min} ostatniego wyrazu w równaniu (3) musi być nie mniejszy niż 3 ($n_{\text{min}} \geq 3$).

5. SCHEMAT OPROGRAMOWANIA PRZYJĘTEGO W BADANIACH

Schemat działania oprogramowania przedstawiono na rysunku 2. Są na nim widoczne dwie pętle iteracyjne. Pierwszą pętlą jest pętla całkowania równań (symulacji). Była ona przerywana, gdy długość l_{lim}, będąca długością bieżącej drogi, osiągnęła założoną wartość. Drugą zaś była pętla procesu optymalizacji. Była ona przerywana, gdy liczba iteracji osiągnęła wartość i_{lim}. Wartość ta oznaczała, że l_{lim} symulacji musi zostać wykonanych, aby proces optymalizacyjny został zakończony. Jeśli optymalne rozwiązanie zostało znalezione wcześniej ($i < i_{\text{lim}}$), wtedy proces optymalizacyjny zostawał automatycznie zakończony.

Rys. 2. Schemat działania oprogramowania do optymalizacji
6. PRZYJĘTA METODYKA BADAŃ

Ideą wykorzystaną w pracy, jak już wspomniano, była modyfikacja obliczania funkcji celu tak, aby początkowe i końcowe strefy krzywej miały większe wagę (znaczenie) niż strefa środkowa. Autorzy pracy sądzili, że być może większa długość części środkowej krzywej przejściowej powoduje, że kształt stref – początkowej i końcowej – staje się mniej istotny. W założeniach przyjęto liczenie funkcji celu tylko dla pierwszych i ostatnich \(p\% \) długości krzywej i całego luku kołowego. Oznaczało to, że funkcja celu nie jest liczona dla (100–2\(p\))% środkowej części krzywej. W pracy tej przyjęto \(p \) równe 1; 5; 10 i 20. Badano KP wielomianowe stopni 5. i 9.

Każda wielomianowa krzywa przejściowa ma tzw. krzywą wzorcową – początkową przyjmowaną w procesie optymalizacji. Równanie krzywej przejściowej stopnia 5. i 9. wraz z jej krzywizną przedstawiono np. w [8].

Długości KP przyjmowane w pracy wynikały z dwu warunków [8], [9] dotyczących:
- nieprzekroczenia maksymalnej wartości prędkości podnoszenia się koła po rampie przechylkowej \(f_{dop} \),
- nieprzekroczenia maksymalnej wartości niezrównoważonego przyspieszenia poprzedniego \(\psi_{dop} \).

Jeśli w danym procesie optymalizacji zakładano stałą (niezmienną) długość KP, to wyznaczano długość dla KP wzorcowej. Dla każdej z krzywych wzorcowych minimalne długości KP, przy spełnieniu powyższych warunków, liczone wg metody pokazanej w [1].

Obliczając długości krzywych wykorzystywano następujące parametry kinematyczne: \(v \), \(f_{dop} \), \(\alpha_{dop} \), \(\psi_{dop} \). Do celów obliczeń przyjęto następujące ich wartości:
- \(\alpha_{dop} = 0 \text{ m/s}^2 \) i \(0.6 \text{ m/s}^2 \) (wybrano wartość łagodną w porównaniu z [5] – 0.72 m/s\(^2\) oraz z [6] – 0.85 m/s\(^2\)),
- \(v = 24.26 \text{ m/s} \) i \(30.79 \text{ m/s} \),
- \(f_{dop} = 56 \text{ mm/s} \),
- \(\psi_{dop} = 1 \text{ m/s}^3 \).

Wspomniane dwie prędkości \(v \) pojazdu wybrano nieprzypadkowo [8], [9]:
- 24,26 m/s – gwarantowała idealnie zrównoważone przyspieszenie poprzedniego toru – \(\alpha_{dop} = 0 \text{ m/s}^2 \),
- 30,79 m/s – gwarantowała osiągnięcie w tej płaszczyźnie niezrównoważonego przyspieszenia poprzedniego \(\psi_{dop} = 0,6 \text{ m/s}^2 \).

Do obliczeń przyjęto również przechyłkę \(H = 150 \text{ mm} \) oraz promień luku kołowego \(R = 600 \text{ m} \). Długości krzywych przejściowych przedstawiono w tabeli 1 i takie wartości przyjmowano do dalszych obliczeń.

Tabela 1

<table>
<thead>
<tr>
<th>Stopień wielomianu</th>
<th>długość (l_0) [m] ((v=24,26 \text{ m/s}))</th>
<th>długość (l_0) [m] ((v=30,79 \text{ m/s}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>97,47</td>
<td>123,74</td>
</tr>
<tr>
<td>9.</td>
<td>142,15</td>
<td>180,46</td>
</tr>
</tbody>
</table>
7. WYNIKI OPTYMALIZACJI KSZTAŁTU KRZYWYCH PRZEJŚCIOWYCH

W pracy autorów artykułu wyniki z poszczególnych procesów optymalizacji kształtu krzywych przejściowych składają się z:

- optymalnych współczynników wielomianu,
- wartości funkcji celu,
- graficznej reprezentacji krzywej i krzywizny,
- przemieszczenia i przyspieszenia środka masy nadwozia pojazdu i zestawów kołowych.
Niniejsza praca prezentację wyników optymalizacji ogranicza do:
- krzywizn optymalnych krzywych przejściowych,
- przebiegów dynamicznych – przemieszczeń i przyspieszeń środka masy nadwozia pojazdu.

Celem niniejszego rozdziału było pokazanie wyników badań dotyczących optymalizacji kształtu KP z wykorzystaniem opisanego modelu pojazdu 2-osiowego, a także przyjętych kryteriów \(FC_1 \) i \(FC_2 \). Każda pojedyncza symulacja wchodząca w skład optymalizacji jak zawsze polegała na przejeździe pojazdu po trasie składającej z toru prostego TP (50 m), krzywej przejściowej KP (\(l_h \)) i łuku kołowego ŁK (100 m).

Autorzy, jak już wspomniano, badali wielomianowe kolejowe krzywe przejściowe stopni 5. i 9. W niniejszym rozdziale autorzy przedstawili wyniki tylko trzech optymalizacji:

- 5. stopień, \(FC_2 \), \(p=1\% \), \(l_h=97,47 \) m, \(v=24,26 \) m/s,
- 9. stopień, \(FC_1 \), \(p=5\% \), \(l_h=142,15 \) m, \(v=24,26 \) m/s,
- 9. stopień, \(FC_1 \), \(p=20\% \), \(l_h=180,46 \) m, \(v=30,79 \) m/s.

Na rysunkach 3, 5 i 7 przedstawiono cechy krzywych przejściowych: krzywizny krzywych przejściowych – początkowej i optymalnej oraz pochylenia rampy przechylkowej wspomnianych krzywych. Na rysunkach 4 i 6 przedstawiono przebiegi dynamiczne – przyspieszenia i przemieszczenia poprzeczne środka masy nadwozia badanego modelu pojazdu wykorzystanego w badaniach.

We wszystkich badanych przypadkach krzywizny otrzymanych optymalnych krzywych przejściowych nie posiadały styczności w skrajnych punktach krzywej – początkowym i końcowym. Procedura optymalizacyjna była tak zaprogramowana, że mogła wskazać jako krzywe optymalne gładkie krzywe przejściowe. Część krzywizn otrzymanych optymalnych krzywych przejściowych miała krzywizny zbliżone do liniowej krzywizny paraboli 3. stopnia (rys. 3a), część miała kształt pośredni między krzywizną krzywej wzorcowej i liniową krzywizną dla paraboli 3. stopnia (rys. 5a), wreszcie część nie różniła się znacznie od krzywizny krzywej wzorcowej (rys. 7a).

We wszystkich wykonanych na potrzeby niniejszej pracy optymalizacjach optymalne krzywe przejściowe stopni 5. i 9. miały lepsze „zachowania” dynamiczne nadwozia pojazdu i zestawów kołowych – przemieszczenia i przyspieszenia poprzecznych środków mas – w stosunku do krzywych początkowych. Pojazd bardziej płynnie przejeżdżał przez znalezione KP, co oczywiście ma wpływ na komfort pasażerów. Jest to potwierdzone przez rysunki 4 i 6.
Rys. 3. Cechy KP: a) krzywizny krzywych przejściowych – początkowej i optymalnej, b) pochylenie rampy przechylkowej wspomnianych krzywych – 5. stopień, FC₂, p=1%, l₀=97,47 m, v=24,26 m/s

Rys. 4. Przepięci dynamiczne: a) przemieszczenia, b) przyspieszenia poprzeczne środka masy nadwozia – 5. stopień, FC₂, p=1%, l₀=97,47 m, v=24,26 m/s

Optymalną krzywą przejściową znalezioną przez procedurę optymalizacyjną w procesie optymalizacji jest krzywa:

\[
y = \frac{1}{600} \left(-0,0137125 \cdot \frac{l^5}{97,47^3} + 0,0671177 \cdot \frac{l^4}{97,47^2} + 0,0781394 \cdot \frac{l^3}{97,47} \right) \quad (7)
\]

Krzywa ta została znaleziona w 169 kroku (\(i_{lim}=169\)).
Rys. 5. Cechy KP: a) krzywizny krzywych przejściowych – początkowej i optymalnej, b) pochylenie rampy przechyłkowej wspomnianych krzywych – 9. stopień, FC1, p=5%, l0=142,15 m, v=24,26 m/s

Rys. 6. Przebiegi dynamiczne: a) przemieszczenia, b) przyspieszenia poprzeczne środka masy nadwozia – 9. stopień, FC1, p=5%, l0=142,15 m, v=24,26 m/s

Optymalną krzywą przejściową znalezioną przez procedurę optymalizacyjną jest krzywa:

\[y = \frac{L}{600} \left(-0.124569 \cdot \frac{l^9}{142,15^7} + 0.560305 \cdot \frac{l^8}{142,15^6} - 0.896517 \cdot \frac{l^7}{142,15^5} \
+ 0.522177 \cdot \frac{l^6}{142,15^4} + 0.1 \cdot \frac{l^3}{142,15^1} \right). \] (8)
8. WNIOSKI

W niniejszej pracy pokazano, że zmodyfikowanie obliczania funkcji celu tak, aby początkowe i końcowe strefy krzywej miały większe wagi (zniczenie) niż strefa środkowa nie zlikwidowało załomów w krzywiznach optymalnych krzywych przejściowych. Otrzymane krzywe optymalne stopnia 5. oraz 9. posiadały załomy krzywizn w skrajnych punktach, mimo że procedura optymalizacyjna mogła znaleźć tzw. krzywe gładkie, tj. takie, których krzywizny są styczne we wspomnianych punktach.

Wspomnieć należy, że funkcja celu nie była liczona dla (100–2p)% środkowej długości krzywej (p równe 1; 5; 10 i 20). Mimo wycięcia środkowej części krzywej i przez to nadaniu większych wag początkowej i końcowej strefie krzywej autorom nie udało się uzyskać krzywych gładkich. Świadczyć to może o tym, że środek krzywej ma mniejszy wpływ na dynamicę pojazdu niż strefa początkowa i końcowa krzywej. Dlatego optymalne krzywe przejściowe otrzymane w niniejszej pracy są zbliżone do krzywych z prac [8] i [9], gdy funkcja celu liczona była na całej długości trasy.

Ze względu na fakt, że krzywa, której krzywiznę przedstawiono na rysunku 7a nie różni się znacząco od gładkiej wzorcowej krzywej stopnia 9., nadmienić należy, że problem będzie dalej badany. Jako krzywe przejściowe autorzy pracy zamierzają wykorzystać wielomiany stopni 9–11, a jako krzywą początkową parabolę 3. stopnia.
Bibliografia

5. Rozporządzenie Ministra Transportu i Gospodarki Wodnej w sprawie warunków technicznych, jakim powinny odpowiadać budowle kolejowe i ich usytuowanie z dnia 10 września 1998 r. (Dz. U. 98.151.987) z późn. zm.

OPTIMIZATION OF THE SHAPE OF RAILWAY TRANSITION CURVES WITH SPECIAL EMPHASIS ON INITIAL AND END AREA

Summary: The aim of this article was to clarify, why the curvatures’ bends of optimum railway transition curves (TCs) obtained by the authors at the terminal points of the curve – the beginning and the end – had a relatively small negative impact on vehicle dynamics while running on such curves. In this context the authors put forward the following research hypothesis. Maybe bigger length of the middle zone causes that shape of the terminal zones has become less important. The idea of the research was to modify quality function calculation so that initial and end zones have bigger weights (importance) than the middle zone. At this stage the central part of TC was completely ignored in the quality function calculation.

Keywords: railway transition curves, railway vehicles dynamics, simulation